279 research outputs found

    Probing Vortex Unbinding via Dipole Fluctuations

    Full text link
    We develop a numerical method for detecting a vortex unbinding transition in a two-dimensional system by measuring large scale fluctuations in the total vortex dipole moment P⃗{\vec P} of the system. These are characterized by a quantity F\cal F which measures the number of configurations in a simulation for which the either PxP_x or PyP_y is half the system size. It is shown that F\cal F tends to a non-vanishing constant for large system sizes in the unbound phase, and vanishes in the bound phase. The method is applied to the XY model both in the absence and presence of a magnetic field. In the latter case, the system size dependence of F\cal F suggests that there exist three distinct phases, one unbound vortex phase, a logarithmically bound phase, and a linearly bound phase.Comment: 6 pages, 2 figure

    A Renormalization Group Analysis of Coupled Superconducting and Stripe Order in 1+1 Dimensions

    Full text link
    In this paper we perform a renormalization group analysis on the 1+1 dimensional version of an effective field theory (previously proposed by Dung-Hai Lee, cond-mat/011393) describing (quantum) fluctuating stripe and superconductor orders. We find four possible phases corresponding to stripe order/disorder combined with superconducting order/disorder.Comment: 8 pages, 3 figures, revte

    Instanton-induced crossover in dense QCD

    Full text link
    We study the properties of an instanton ensemble in three-flavor dense QCD which can be regarded as an instanton plasma weakly interacting by exchanging the eta' mesons. Based on this description, we explore the chiral phase transition induced by the instanton ensemble at high baryon density in analogy with the Berezinskii-Kosterlitz-Thouless transition. Using the renormalization group approach, we show that the instanton ensemble always behaves as a screened and unpaired plasma. We also demonstrate that the chiral condensate in dense QCD is proportional to the instanton density.Comment: 15 pages; version to appear in JHE

    Magnetoinductance of Josephson junction array with frozen vortex diffusion

    Full text link
    The dependence of sheet impedance of a Josephson junction array on the applied magnetic field is investigated in the regime when vortex diffusion between array plaquettes is effectively frozen due to low enough temperature. The field dependent contribution to sheet inductance is found to be proportional to f*ln(1/f), where f<<1 is the magnitude of the field expressed in terms of flux quanta per plaquette.Comment: 5 pages, no figure

    Exact Calculation of the Vortex-Antivortex Interaction Energy in the Anisotropic 3D XY-model

    Full text link
    We have developed an exact method to calculate the vortex-antivortex interaction energy in the anisotropic 3D-XY model. For this calculation, dual transformation which is already known for the 2D XY-model was extended. We found an explicit form of this interaction energy as a function of the anisotropic ratio and the separation rr between the vortex and antivortex located on the same layer. The form of interaction energy is ln⁥r\ln r at the small rr limi t but is proportional to rr at the opposite limit. This form of interaction energ y is consistent with the upper bound calculation using the variational method by Cataudella and Minnhagen.Comment: REVTeX 12 pages, In print for publication in Phys. Rev.

    Finite Size and Current Effects on IV Characteristics of Josephson Junction Arrays

    Full text link
    The effects of finite size and of finite current on the current-voltage characteristics of Josephson junction arrays is studied both theoretically and by numerical simulations. The cross-over from non-linear to linear behavior at low temperature is shown to be a finite size effect and the non-linear behavior at higher temperature, T>TKTT>T_{KT}, is shown to be a finite current effect. These are argued to result from competition between the three length scales characterizing the system. The importance of boundary effects is discussed and it is shown that these may dominate the behavior in small arrays.Comment: 5 pages, figures included, to appear in PR

    Universality Class of O(N)O(N) Models

    Get PDF
    We point out that existing numerical data on the correlation length and magnetic susceptibility suggest that the two dimensional O(3)O(3) model with standard action has critical exponent η=1/4\eta=1/4, which is inconsistent with asymptotic freedom. This value of η\eta is also different from the one of the Wess-Zumino-Novikov-Witten model that is supposed to correspond to the O(3)O(3) model at Ξ=π\theta=\pi.Comment: 8 pages, with 3 figures included, postscript. An error concerning the errors has been correcte

    Exactly Solvable Ginzburg-Landau theories of Superconducting Order Parameters coupled to Elastic Modes

    Full text link
    We consider two families of exactly solvable models describing thermal fluctuations in two-dimensional superconductors coupled to phonons living in an insulating layer, and study the stability of the superconducting state with respect to vortices. The two families are characterized by one or two superconducting planes. The results suggest that the effective critical temperature increases with the thickness of the insulating layer. Also the presence of the additional superconducting layer has the same effect.Comment: Submitted to Physical Review

    Aspect-ratio dependence of the spin stiffness of a two-dimensional XY model

    Full text link
    We calculate the superfluid stiffness of 2D lattice hard-core bosons at half-filling (equivalent to the S=1/2 XY-model) using the squared winding number quantum Monte Carlo estimator. For L_x x L_y lattices with aspect ratio L_x/L_y=R, and L_x,L_y -> infinity, we confirm the recent prediction [N. Prokof'ev and B.V. Svistunov, Phys. Rev. B 61, 11282 (1999)] that the finite-temperature stiffness parameters \rho^W_x and \rho^W_y determined from the winding number differ from each other and from the true superfluid density \rho_s. Formally, \rho^W_y -> \rho_s in the limit in which L_x -> infinity first and then L_y -> infinity. In practice we find that \rho^W_y converges exponentially to \rho_s for R>1. We also confirm that for 3D systems, \rho^W_x = \rho^W_y = \rho^W_z = \rho_s for any R. In addition, we determine the Kosterlitz-Thouless transition temperature to be T_KT/J=0.34303(8) for the 2D model.Comment: 7 pages, 8 figures, 1 table. Minor changes to published versio

    Montecarlo simulation of the role of defects as the melting mechanism

    Full text link
    We study in this paper the melting transition of a crystal of fcc structure with the Lennard-Jones potential, by using isobaric-isothermal Monte Carlo simulations. Local and collective updates are sequentially used to optimize the convergence. We show the important role played by defects in the melting mechanism in favor of modern melting theories.Comment: 6 page, 10 figures included. Corrected version to appear in Phys. Rev.
    • 

    corecore